International Journal of Clinical and Diagnostic Pathology

ISSN (P): 2617-7226 ISSN (E): 2617-7234 www.patholjournal.com

2021; 4(1): 170-173 Received: 25-11-2020 Accepted: 27-12-2020

Christina

Junior Resident, Department of Pathology, Sree Mookambika Institute of Medical Sciences, Kulasekharam, Tamil Nadu, India

Evelyn Angel

Associate Professor, Department of Pathology, Sree Mookambika Institute of Medical Sciences, Kulasekharam, Tamil Nadu, India

Radiological and cytological correlation of breast lesions with histopathology: A study in a tertiary care centre

Christina and Evelyn Angel

DOI: https://doi.org/10.33545/pathol.2021.v4.i1c.344

Abstract

Background: Breast cancer is the most common cancer in females all around the world. It is of utmost importance that all positive cases are diagnosed at the earliest to decrease its morbidity and mortality. Different techniques including mammography/sonomammography, fine needle aspiration cytology and biopsy are used to diagnose breast cancers. With an early diagnosis, the management can be early and hence effective.

Aim: Analysis of correlation of radiological and cytological findings as initial diagnostic tools with the final histological diagnosis to avoid unnecessary procedures or to alert the need for urgency of early treatment plans of malignancies in breast lesions.

Objectives: 1. To compare the individual efficacy of radiology, cytology and histopathology as a diagnostic modality 2. Role of radiology and cytology as initial diagnostic tools in breast lesions and its correlation with histopathological diagnosis.

Material and Methods: The study was conducted in 70 female patients with breast lump. In each patient the clinical presentation, cytology findings, radiology findings and biopsy findings were compared with the final diagnosis of histopathology of lumpectomy or mastectomy specimen.

Conclusion: Cytological diagnosis is the best way of screening the malignancy compared with radiological and clinical diagnosis. Since, the cytological diagnosis has the high sensitivity, specificity, positive predictive value and negative predictive value.

Keywords: breast cancer, FNAC, mammography, sonomammography, biopsy

Introduction

Breast diseases are showing an unprecedented increasing trend globally ^[1]. Approximately five to fifty percent of females suffer from breast diseases ^[2]. Breast malignancies are most often encountered and the second most common malignancy in Indian women. The incidence rate of breast malignancies in India is around 85 per 10,000 women per year ^[3, 4]. Benign breast diseases because of their high incidence and cancerous potential of some of the histological subtypes deserve attention ^[5].

Screening and diagnostic techniques in breast lesions are critical because of the highly successful outcomes with early diagnosis and treatment ^[6]. Keuzer, Boquoi and Hermansen suggested a triple diagnostic technique which includes clinical examination, mammography and FNAC ^[7, 8]. Mammography is the commonly used effective imaging method in patients with non-palpable breast carcinoma. USG plays a role in differentiating cystic and solid breast masses.

Martin and Ellis first introduced the application of FNAC in the diagnosis of palpable breast lesions in 1930 10 and it is now an important minimally invasive and inexpensive diagnostic adjunct which compliments radiological examination. Histopathological evaluation remains the gold standard for diagnosis and acts as an internal quality measure for radiological and cytological findings.

Material and Methods

This retrospective study was carried out at the Department of Pathology, Sree Mookambika Institute of Medical Sciences, Kulasekharam from January 2019 to June 2020.A total of 70 cases were studied. The ages of patients included was from 20 to 84. Physical and clinical examination of lesion was performed in all cases.

Corresponding Author: Evelyn Angel Associate Professor, Department of Pathology, Sree Mookambika Institute of Medical Sciences, Kulasekharam, Tamil Nadu, India FNAC was done and stained by PAP and H and E. A couple of slides were air dried and stained with Giemsa stain. The smears were examined by light microscopy and classified as inflammatory, benign and malignant smears. Biopsy specimens obtained after FNAC was fixed, grossed, processed and stained by H and E. Microscopic examination was done. Radiological correlation of the breast lesions during that period was taken from the archives of the Department of Radiology. The radiological and cytological diagnosis was correlated with the histopathology.

Results

Statistical analysis was carried out through SPSS software. Fisher's exact test was used to find the association between histopathological outcome and clinical/cytological/radiological findings. The best screening test was identified based on sensitivity, specificity, PPV and NPV.

Table 1: Frequency distribution of tumor affecting breast-side

Side	Frequency	Percent
Right	45	64.3
Left	25	35.7
Total	70	100.0

From the above table, it is observed that the majority of the patients had the tumor on the right side breast (64.3%).

Table 2: Descriptive statistics for patients' age

		Minimum	Maximum	Mean	Std. deviation
I	Age	20	84	45.27	12.417

The patients' age was ranging from 20 to 84 years. The mean age of the patients was 45 (± 12) years old.

Table 3: Association between clinical findings and histopathological diagnosis

	Histopathological diagnosis			
Clinical presentation	Benign	Malignant	Total	Statistic
_	n (%)			
Lump without pain	38 (84.4)	7 (15.6)	45 (100.0)	
Lump with pain	8 (36.4)	14 (63.6)	22 (100.0)	Fisher's Exact
Fungating growth	0 (0)	2 (100.0)	2 (100.0)	P-value:0.001
Nipple discharge	0 (0)	1(100.0)	1 (100.0)	

Fisher's exact P-value reveals that there was a significant association between clinical findings and histopathological diagnosis (P<0.01). In addition, the majority of the patients who had lump without pain, did not have the malignancy (84.4%) whereas the most patients who had lump with pain, had the malignancy (63.6%). All the patients who had fungating growth and nipple discharge, had the strong evidence of malignancy in the histopathological diagnosis.

Table 4: Association between cytological findings and histopathological diagnosis

Cytological diagnosis	diag	Histopathological diagnosis Benign Malignant		Statistic
	n (%)			
Benign	44 (97.8)	1 (2.2%)	45 (100.0)	
Suspicious	1 (33.3)	2 (66.7)	3 (100.0)	Fisher's Exact
Malignant	0 (0)	21 (100.0)	21 (100.0)	<i>P</i> -value:0.001
Inadequate	1 (100.0)	0 (0)	1 (100.0)	

Fisher's exact P-value reveals that there was a significant association between cytological findings and histopathological diagnosis (P<0.01). The majority of the

benign and malignant findings in cytological diagnosis were same in the confirmatory histopathological diagnosis.

Table 5: Association between radiological findings and histopathological diagnosis

Radiological diagnosis	Histopathological diagnosis Benign Malignant		Total	Statistic
	n (%)			
BIRADS II	38 (100.0)	0 (0)	38 (100.0)	
BIRADS III	8 (61.5)	5 (38.5)	13 (100.0)	Fisher's Exact
BIRADS IV	0 (0)	11 (100.0)	11 (100.0)	P-value:0.001
BIRADS V	0 (0)	8 (100.0)	8 (100.0)	

Fisher's exact P-value reveals that there was a significant association between radiological diagnosis and histopathological diagnosis (P<0.01). All BIRADS 2 findings in the radiological diagnosis were benign state in the confirmatory histopathological findings. Analogously, all BIRADS 4 and BIRADS 5 findings in the radiological diagnosis were malignant state in the confirmatory histopathological diagnosis.

Table 6: Sensitivity, specificity, PPV and NPV of clinical findings

Clinical presentation	Histopatholog	Total			
Clinical presentation	Benign	Malignant	Total		
Benign	38	7	45		
Malignant	8	17	25		
Total	46	24	70		

Sensitivity = (17/24)*100 = 70.83% Specificity = (38/46)*100 = 82.61%

PPV = (17/25)*100 = 68%

NPV = (38/45)*100 = 84.44%

From the above findings, it is concluded that the majority of the benign findings in clinical diagnosis were actually benign in the confirmatory histopathological diagnosis. Similarly, the majority of the malignant findings in clinical diagnosis were indeed malignant in the confirmatory histopathological diagnosis.

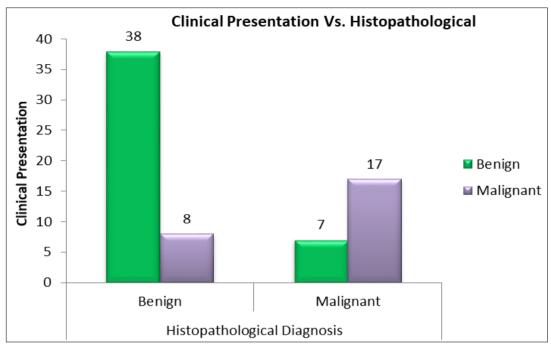


Fig 1: Clinical findings Vs. Histopathological diagnosis

Table 7: Sensitivity, specificity, PPV and NPV of cytological findings

Catalonical diamonia	Histopathological diagnosis		Tatal
Cytological diagnosis	Benign	Malignant	Total
Benign	45	1	46
Malignant	1	23	24
Total	46	24	70

Sensitivity = (23/24)*100 = 95.83%

Specificity = (45/46)*100 = 97.83% PPV = (23/24)*100 = 95.83 %

NPV = (45/46)*100=97.83 %

From the above findings, it is concluded that the majority of the benign findings in cytological diagnosis were actually benign in the confirmatory histopathological diagnosis. Similarly, the majority of the malignant findings in cytological diagnosis were really malignant in the confirmatory histopathological diagnosis.

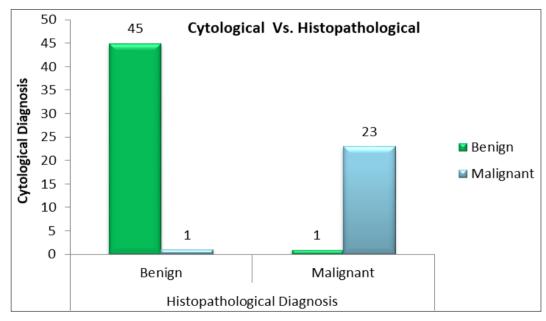


Fig 2: Cytological findings Vs. Histopathological diagnosis

Table 8: Sensitivity, specificity, PPV and NPV of radiological findings

Radiological findings	Histopatholog	Total	
Kadiological illidnigs	Benign	Malignant	Total
Benign	46	5	51
Malignant	0	19	19
Total	46	24	70

Sensitivity = (19/24)*100 = 79.2% Specificity = (46/46)*100 = 100% PPV = (19/19)*100 = 100 % NPV = (46/51)*100 = 90.2 % From the above findings, it is concluded that all of the benign findings in radiological diagnosis were actually benign in the confirmatory histopathological diagnosis. Similarly, the majority of the malignant findings in radiological diagnosis were indeed malignant in the confirmatory histopathological diagnosis.

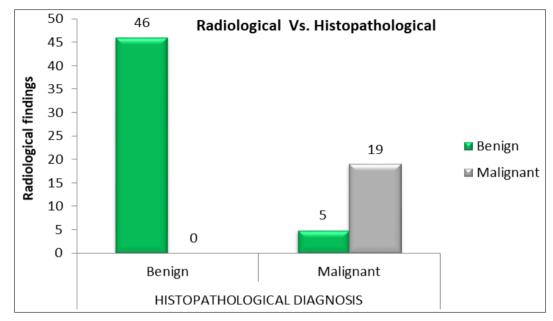


Fig 3: Radiological findings Vs. Histopathological diagnosis

Conclusion

Cytological diagnosis is the best way of screening the malignancy compared with radiological and clinical diagnosis. Since, the cytological diagnosis has the high sensitivity, specificity, positive predictive value and negative predictive value.

References

- Silva LC, Furtado JX. Correlation between ultrasonographic features and histopathological findings of breast lesions in biopsies. Mastology (Impr.) 2017, 225-9.
- Banik Vaithyanathan A, Kotasthane DS. Cytomorphology of lesions with breast historadiological correlation in a tertiary care centre of Puducherry. IP Archives of Cytology Histopathology Research 2020;3(1):1-6.
- 3. Gupta RK. Correlation of Cytology, Radiology and Histopathology in Suspected Cases of Breast Cancer. PAIN 2018;18:18.
- Mulka A, Kotasthane VD, Dhaka R, Kotasthane DS. Correlation of Histopathological Study of Breast Lesions with cytology and mammography as a measure of internal quality and diagnostic accuracy. Annals of Pathology and Laboratory Medicine 2017;4(4):A397-402.
- 5. Richie AJ, Mellonie P. Radiological and cytological correlation of breast lesions with histopathological findings in a tertiary care hospital in costal Karnataka. Int J Contemp Med Res 2019;6(2):102-8.
- 6. Tiwari P, Ghosh S, Agrawal VK. Evaluation of breast

- lesions by digital mammography and ultrasound along with fine-needle aspiration cytology correlation. J Cancer Res Ther 2018;14(5):1071-1074. doi:10.4103/0973-1482.191053
- 7. Yalavarthi S, Tanikella R, Prabhala S, Tallam US. Histopathological and cytological correlation of tumors of breast. Med J DY Patil Univ 2014;7:326-31.
- 8. Tse Gary MK. Sonographic, Mammographic, and Histopathologic Correlation of Symptomatic Ductal Carcinoma *In Situ*. American Journal of Roentgenology 2014;182:101-110. doi: 10.2214/ajr.182.1.1820101
- 9. George GA, Antony P. Correlation of fine needle aspiration cytology with histopathological diagnosis in assessing breast lumps at a tertiary care hospital. International Journal of Research in Medical Sciences 2018;6(11):3738.
- 10. Srikanth S. Cytological & Histopathological correlation of Breast lesions A study of one hundred cases. Indian Journal of Pathology and Oncology 2017;4(2):273-7.